Mixture (Natural) Sources Extra (Labels, Text, Video, etc.) Settings / Techniques
- - NLP / CV 😛
- - Source-Unsupervised

Universal Sound Separation with Artificial Mixes - Postolache, E., Pons, J., Pascual, S., & Serrà, J. (2023, June). Adversarial Permutation Invariant Training for Universal Sound Separation. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE. (https://arxiv.org/abs/2210.12108)

**• Independent Bayesian Inference with Unconditional Priors ***- Jayaram, V., & Thickstun, J. (2020, November). Source separation with deep generative priors. In International Conference on Machine Learning (pp. 4724-4735). PMLR. (https://arxiv.org/abs/2002.07942)

• Factorization Methods (ICA, NMF)

• Unsupervised Universal Sound Separation - Wisdom, S., Tzinis, E., Erdogan, H., Weiss, R. J., Wilson, K., & Hershey, J. R. (2020, December). Unsupervised sound separation using mixture invariant training. In Proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 3846-3857). (https://arxiv.org/abs/2006.12701) | | - | ✓ | ✓ | Source Weakly-Supervised

• Universal Sound Separation with Text Conditioning and Artificial Mixes - Liu, X., Liu, H., Kong, Q., Mei, X., Zhao, J., Huang, Q., Plumbley, M., & Wang, W. (2022). Separate What You Describe: Language-Queried Audio Source Separation. Interspeech. (https://arxiv.org/abs/2203.15147)

Independent Bayesian Inference with Conditional Priors

• Blend of MixIt and Language-Queried Audio Source Separation?** | | ✓ | ✓ | - | Supervised (Coherence, No Labels), e.g., Harmonic Singing Voices:

PIT Regression

Regression

• Source-Joint Bayesian Inference